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ON FUNCTIONAL EQUATIONS IN GAMES OE ENCOUNTER
AT A PRESCRIBED INSTANT

5.V. CHISTIAKOV

Functional operators, simpler than in /1—3/, are determined in connection with
games of encounter at a prescribed instant. These operators or their analogs can

be used to obtain many of the fundamental results in /1—3/, in particular, itera-
tion methods can be constructed, converging to the game's value function. As one
more illustration of the capabilities of the method developed in /1—3/, the operat-
ors determined below are used to give a new proof of the well-known result /4/ on
the identification of the game's value function by means of the so-called main
eguation.

Let the dynamics in a game of encounter at a prescribed instant be described by the system

= f(t, z,u,v) z= R (1)
u e P e Comp RY, v & Q< Comp R™
Concerning the vector-valued function f(-) we assume the fulfillment of the following condi-
tions: 1) f(-) is continuous on (—,T] X R® X P X Q and satisfies a local Lipschitz condition
in x; 2) there exists A>0 such that |GGz u, ) <A1 4+{z)) for all t=(—». T, z= R*, ue= P,
v @; 3) the equality
max min <l, f (£, 2, u, v). = min max <}, { ¢, z, u, v))
vE=Q usP

usP veQ
is valid for any !=R™ te=(—>, T] and ze R". We define the operators
O_, O, :C((— o0, T} X B —C ((— 00, T} X R")

For any function w () continuous on (—, T] X R®* and for any & (— o, T], z°= R"

D_ow(t°2°)= max max inf w(t, z (O, 2% u(-), V)
telte, T »=Q W)

D,ow(,2°)= min min supw (¢ z (. t°, 2° u, v (-)))
t=[t°, T] ueP of-)

where the operation inf (respectively, sup) ranges over all piecewise-constant functions

w:[t’ T} =P (v :{t°, T} 5 Q), while the function z{(-, 2% u (),2)(z(-, 1 2% u,v(-))) is the solution of
Eq. (1) on interval [, T], with the initial condition z (°) = 2°, under the piecewise -~constant cont-
rol u(-) (v(-)) and under the constant control » (u) on the interval [, 7). As was done in /1,2/,
it can be shown that the definitions of operators ®. and @, are well posed, and, in part-
icular, they indeed map C ((— o, T] X B") into itself. In addition, as in /1,2/, the following
lemma can be established.

Lemma. The inequalities Q_ew(-)>w(:) and @ ow(-)<w() are valid for any function
w()e C((—oo, TI X RY.

Theorem 1. Let the function »® (-)eC((—«ooo, Tl X g") and be continuously differentiable
in the domain (— o, T) X R*. Then assertions 1~ and 2  are equipotent:

17. In domain (—o°, 7) X R® the function »°(.) satisfies the equation
. aw > ow . (2)
max min { — (¢, ), { (¢, z, u, _—{tz)=0
wax min (32 (6210 700> + 2 (1 2)
o . .
27. The function w»°(-) is the common fixed point of operators ®. and ®,.
Proof. Let us show that if assertion 1° is valid, then, for example, Q0w () = w° (). To

do this, with due regard to the Lemma, it suffices to show that P,ow () > w’(-). The latter
inequality is automatically fulfilled if
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sup u® (f, z (¢, £°, 2° u, v (-))) 3> w° (°, 2°) 3
v()

for any fe(—«, T, 2= R u=P and t=t°,T| . Inequality (3) is trivial when ¢=¢; there-
fore,let #<t<T. Since function »°(:) is of class (!, (3) is equivalent to the inequality

'
supSh(t,v(-))dt}O; h{t,v()) = %'%—(T.I(t.v(-))).f(t.I(T»V('))-uv ”(T))>+ (4)
o)

2

?T;”t—o(r.z(r.v(-)))- (Lo N=(n e, fou ()

(here the arbitrary t°e(—oo, T), 2°=R" ue P and te (#°,T]) are reconed fixed). By assumption,

function w»°(-) satisfies Eq.(2) in the domain (— oo, T) X R™ ; therefore, for any 6=206 (k)= (t —

t°)/Jk we can find a piecewise-constant control v (Vg (D) =v for T+ (i—1)8,1°+i), i =1, 2,
wk—1 and 3 (7) = for te [t —0,t]) such that

R+ (=18, 05 () >0,i=1,2,....k (5)

In view of the continuity of the functions &u®(.)/dz, v° (-)/0t and f(-) in their domains, as well
as in view of the uniform boundedness and equicontinuity of the set of solutions z (%, t°, 2°, u,
» (), te%t]l, of system (1), corresponding to all possible piecewise-constant controls v
[£°,t] - Q, it follows from (5) that for any €>0 we can find such 8 =4 (k) and the correspond-
ing control wy(-) which will ensure the fulfillment of the inequality
Rz, o5 () > —/(t — %), Vi[04

Hence, with due regard to the definition of function &(t,25(:)), 1= [°,¢], and to the arbitrarin-
ess of £>0, we have (4). Thus, from the validity of assertion 1° it follows that ®,cu® () =
w°(-). Analogously, with due regard to assumption 3) on f(-), it can be established that from
the validity of assertion 1~ follows D_ow®(-)=w(.). We take the implication 1°= 2° as prov-
ed.

Let us now prove that 2°=1°, We assume the contrary. For example, let assertion 2°
be valid, but let there exist "= (—~ o, T) and z°< R" such that the expression on the left-
hand side of (2) is greater than zero. Then, because the functions au®(-)/dz, du®(-)/dt and f(-)
are continuous, we can find neighborhoods § (1) C(— o, T) and § (z°) CR" of points ¢ and z2°
as well as a control = @, such that for any s€P,t=S§ () and ze S (29

?io(t,z),f(t.z,uu>+_~(t1 >a>0
dr

Since the set of solutions =z (7, ¢, 2%u(:), ), 1, T, of system (1), corresponding to all pos-
sible piecewise-constant controls u: [t°, T) — P, is equicontinuous, we can find ¢S (<o
T) such that

i
infSh(m(~))dr>a>o; Rz, u () =
u(-)

©

s (B (O (2 (5w (D (@9 +

%u%i(rv z(r,u(-)), z(v,u(-) =z (T, 2%u (+)e v°)

From this inequality, in its own turn, follows the inequality ®@_ ou® (t°, 2°) > »° (¢°, 2°) which con-
tradicts the fact that »°() 1is a fixed point of operator ®_. Analogously, assuming that
assertion 2° is valid and that the expression on the left-hand side of {2) is less than zero,
we arrive at a contradiction with the fact that »°(-) is a fixed point of operator @®,. The
theorem has been proved.

We now assume that in the game of encounter at a prescribed instant, described by system
(1), the gain of the maximizing player, who has the choice of » e Q at his disposal, and, re-
spectively, the loss of the minimizing player, who has the choice of ue< P at his disposal,
are determined by the quantity

H (z(T)), H ()= C(RY) (6)
Then, the next theorem can be established by analogy with /3/.

Theorem 2. Let the function u® ()& C ((— o0, T} X R"). Then the assertions 1° ana 2O are
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equipotent:

1~. Function w»°(-) is the value function of game (1), (6).
27. Function w»°() satisfies the boundary condition

w’ (T, z) = H (2) (7}

and is a common fixed point of operators ®_ and @,.

From Theorems 1 and 2 follows the well-known result /4/ on the identification of the

value function by means of the main equation (2).

in

Theorem 3. Let the function w°(-)& C{(— o, 7] X R") and be continuously differentiable
the domain (~ o0, T) X R". Then the following assertions 1 and 2° are equipotent:

1°. Function w»°(-) is the value function of game (1), (6).

2°.  Function vw® (-) satisfies Eq.(2) in the domain (— oo, 7) X R* and satisfies boundary

condition (7).
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